FortiOS 5.6 Online Help Link FortiOS 5.4 Online Help Link FortiOS 5.2 Online Help Link FortiOS 5.0 Online Help Link

Home > Online Help

> Chapter 16 - IPsec VPN > Phase 1 parameters > Choosing Main mode or Aggressive mode

Choosing Main mode or Aggressive mode

The FortiGate unit and the remote peer or dialup client exchange Phase 1 parameters in either Main mode or Aggressive mode. This choice does not apply if you use IKE version 2, which is available only for route-based configurations.

  • In Main mode, the Phase 1 parameters are exchanged in multiple rounds with encrypted authentication information
  • In Aggressive mode, the Phase 1 parameters are exchanged in a single message with unencrypted authentication information.

Although Main mode is more secure, you must select Aggressive mode if there is more than one dialup Phase 1 configuration for the interface IP address, and the remote VPN peer or client is authenticated using an identifier local ID. Aggressive mode might not be as secure as Main mode, but the advantage to Aggressive mode is that it is faster than Main mode (since fewer packets are exchanged). Aggressive mode is typically used for remote access VPNs. But you would also use aggressive mode if one or both peers have dynamic external IP addresses. Descriptions of the peer options in this guide indicate whether Main or Aggressive mode is required.

Choosing the IKE version

If you create a route-based VPN, you have the option of selecting IKE version 2. Otherwise, IKE version 1 is used.

IKEv2, defined in RFC 4306, simplifies the negotiation process that creates the security association (SA).

If you select IKEv2:

  • There is no choice in Phase 1 of Aggressive or Main mode.
  • FortiOS does not support Peer Options or Local ID.
  • Extended Authentication (XAUTH) is not available.
  • You can select only one Diffie-Hellman Group.
  • You can utilize EAP and MOBIKE.

IKEv2 cookie notification for IKE_SA_INIT

IKEv2 offers an optional exchange within IKE_SA_INIT (the initial exchange between peers when establishing a secure tunnel) as a reuslt of an inherent vulnerability in IPsec implementations, as described in RFC 5996.

Two expected attacks against IKE are state and CPU exhaustion, where the target is flooded with session initiation requests from forged IP addresses. These attacks can be made less effective if a responder uses minimal CPU and commits no state to an SA until it knows the initiator can receive packets at the address from which it claims to be sending them.

If the IKE_SA_INIT response includes the cookie notification, the initiator MUST then retry the IKE_SA_INIT request, and include the cookie notification containing the received data as the first payload, and all other payloads unchanged.

Upon detecting that the number of half-open IKEv2 SAs is above the threshold value, the VPN dialup server requires all future SA_INIT requests to include a valid cookie notification payload that the server sends back, in order to preserve CPU and memory resources.

For most devices, the threshold value is set to 500, half of the maximum 1,000 connections.

This feature is enabled by default in FortiOS 5.4.

IKEv2 Quick Crash Detection

There is support for IKEv2 Quick Crash Detection as described in RFC 6290.

RFC 6290 describes a method in which an IKE peer can quickly detect that the gateway peer that it has and established an IKE session with has rebooted, crashed, or otherwise lost IKE state. When the gateway receives IKE messages or ESP packets with unknown IKE or IPsec SPIs, the IKEv2 protocol allows the gateway to send the peer an unprotected IKE message containing INVALID_IKE_SPI or INVALID_SPI notification payloads.

RFC 6290 introduces the concept of a QCD token, which is generated from the IKE SPIs and a private QCD secret, and exchanged between peers during the protected IKE AUTH exchange.

Adding Quick Crash Detection - CLI Syntax

config system settings

set ike-quick-crash-detect [enable | disable]

end